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 Reference model 

 Sistem output 

Unknown controller output 

KNOWN AND UNKNOWN SIGNALS EVOLUTIONARY APPROACH 

 In this work, capabilities of a feed-forward neural network regarding control of the complex object are investigated. Neural 

controllers have been trained by evolutionary strategy and genetic algorithm with adaptive mutation and crossover probabilities. 

A specific model of an aggressive selection operator is proposed along with one way of co-evolution of the crossover and 

mutation rates. Also, different mechanisms of operator adaptation were compared in the sense of the resulting controller 

performance. Finally, the measurement results, taken from the object (hydraulically driven two-joint robot arm) are presented.  

CONTROL SYSTEM TOPOLOGY 
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 ANN direct model 

 BP algorithm 

Another optimization algorithm? 

 Encoding ANN parameters into chromosome 

 One controller tested at a time 

Survival of  the fittest controllers 

Basic evolotionary robotics methodology 

Robot arm
ANN 2

ANN 1

2

Input2

1

Input1

1

Out1purelin
logsig

K*u

W2
K*u

W1

z

1

z

1

b2
b1

1

In1

 Two-joint robot arm 

 Decentralized control 

 Two independent ANN controllers 

 One hidden sigmoidal layer (10 neurons) 
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EVOLUTION OF THE CONTROLLERS 

STAGE 1

STAGE 2 

Out1

training data

Training Function

Robot arm

Reference model

Input Output

PID controller Non-linear gain

Error2

Error1

0

ANN1

ANN

 Two steps evolution 

 Cloning the optimal PID 

 Training ANN in a closed    

loop 
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Evolution has been done in two steps. 

First step consists of cloning the optimal 

PID controller in order to obtain a 

qualitative population for further 

evolution. Second step is training the 

ANN controller in a closed loop with the 

model of the object. In the first step, a 

nonlinear output gain is used for 

compensating the influence of gravity. 

When the cloning of the PID controller is 

done, the resulting population is used as a 

starting population for second stage of 

evolution. Figure on the left shows the 

training schema for the ANN controller of 

the first link angle. The angle of the 

second link is kept constant. Training the 

ANN controller of the second link angle is 

completely analogous.  

EVOLUTIONARY STRATEGY APPLICATION 
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Rise time tr  (sec) 0.2520 
0.1770 (42% 

better) 

Fall time tp (sec) 0.3020 
0.2150 (40% 

better) 

Steady state error 

() 
0.0630 

0.0380 (66% 

better) 

GENETIC ALGORITHM APPLICATION 

Out of the starting population (3N+1 chromosomes, where N 

is a positive integer), the ANN generator calculates weights 

and biases for each controller (switch position is “1”), whose 

fitness is evaluated, after simulation has been done. After 

that, the  sorting of individuals  is being done in such a way 

that the first individual is the best one. The selection operator 

rejects the last 2N individuals while the copy of survived 

N+1 chromosomes is being made. The set of copied 

survivors forms the mating pool. Then the best chromosome 

from the above mentioned set takes part in crossover with 

each of the remaining N chromosomes from the mating pool. 

The result is the offspring formed from 2N members, which 

are then left to the mutation operator. Out of the mutated 

offspring, NN generator forms 2N controllers (meanwhile, 

the switch position has changed to “k” and remains 

unchanged) whose fitness is evaluated in a mentioned way. 

Now, the mutated offspring with its fitness joins the set of 

original parents (of whom the copy has been made) and the 

population is completed again (3N+1 individuals). The next 

step is sorting this population and the process is being 

repeated until the termination criterion is fulfilled (maximal 

number of generations). It is obvious that the selection 

pressure of this algorithm is extremely great, but it is 

expected that the adaptation mechanism should preserve the 

variety of population in order to prevent the premature 

convergence. Recombination is being done in a way that 

every weight of the first parent crosses over with 

corresponding weight of the second parent (corresponding 

weights have identical indices, such as locations). Results of 

these “elementary” one-point crossovers are new weights 

that are then joined in two complete chromosomes 

representing the final product of the crossover operation 

(Fig. 8b). It is obvious that the probability of elementary 

crossover controls the expected number of crossover points 

of the whole chromosome. In every generation, the 

adaptation mechanism determines crossover and mutation 

probabilities, which, in general, depend on the state of 

population and on the generation number.  

ADAPTATION MECHANISMS 
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25 chromosomes 13 chromosomes 

AF SDF AF SDF 

No 

Adapta

tion 

84.4206 0.2829 87.5134 1.1934 

1 84.1212 0.5626 85.8405 0.7106 

2 83.5713 0.1390 84.5193 0.7465 

3 83.2636 0.6074 85.1524 0.9759 
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Rise time tr  (sec) 0.2689 
0.2532 (6.2% 

better) 

Fall time tp (sec) 0.2970 
0.2583 (15% 

better) 

Steady state error – positive step 

() 
0.0265 

0.0258 (2.7% 

better) 

Steady state error - negative step 

() 
0.0292 

0.0305 (4.3% 

worse) 

  EA Improved controller performance 

  No restrictions when choosing objective function  

  No need to know the controller outputs 

  Operators adaptation ensured better EA  

performance, especially for smaller populations 

  EA outperformed BP 

Pre-deterministic 

feedback-deterministic 

coevolution 

CONCLUDING REMARKS 

Inputs to the trained controller were error , its integral and derivation. ES(1,4) was implemented, with univariate mutation operator, and without 
recombination operator. Standard deviation of mutation was adjusted in dependence on the effect of previously applied mutation, so that 
simultaneous successful mutations increased the deviation widening in that way the search area, whereas simultaneous unsuccessful 
mutations decreased the deviation by certain amount narrowing the search area. 


