
Design of Neural Network Controller for Robotic

Manipulator Based on Evolutionary Algorithms
Avdagic Zikrija, Konjicija Samim and Lacevic Bakir

University of Sarajevo, Faculty of Electrical Engineering

 Reference model

 Sistem output

Unknown controller output

KNOWN AND UNKNOWN SIGNALS EVOLUTIONARY APPROACH

 In this work, capabilities of a feed-forward neural network regarding control of the complex object are investigated. Neural

controllers have been trained by evolutionary strategy and genetic algorithm with adaptive mutation and crossover probabilities.

A specific model of an aggressive selection operator is proposed along with one way of co-evolution of the crossover and

mutation rates. Also, different mechanisms of operator adaptation were compared in the sense of the resulting controller

performance. Finally, the measurement results, taken from the object (hydraulically driven two-joint robot arm) are presented.

CONTROL SYSTEM TOPOLOGY

Paper ID: 100005

4

e

3

y

2 ?1 p

Reference model

In1 Out1

PlantANN controller

1

w

BP

2

ym

1

y

In1 Out1

Plant

ANN model

ANN controller

1

w

 ANN direct model

 BP algorithm

Another optimization algorithm?

 Encoding ANN parameters into chromosome

 One controller tested at a time

Survival of the fittest controllers

Basic evolotionary robotics methodology

Robot arm
ANN 2

ANN 1

2

Input2

1

Input1

1

Out1purelin
logsig

K*u

W2
K*u

W1

z

1

z

1

b2
b1

1

In1

 Two-joint robot arm

 Decentralized control

 Two independent ANN controllers

 One hidden sigmoidal layer (10 neurons)
0 0.5 1 1.5

-0.02

0

0.02

0.04

0.06

0.08

Time (s)

A
n

g
le

 (
d

e
g

re
e
s
)

Impulse response of the first link angle

EVOLUTION OF THE CONTROLLERS

STAGE 1

STAGE 2

Out1

training data

Training Function

Robot arm

Reference model

Input Output

PID controller Non-linear gain

Error2

Error1

0

ANN1

ANN

 Two steps evolution

 Cloning the optimal PID

 Training ANN in a closed

loop

 
i

ieF)1ln(
Objective function

Evolution has been done in two steps.

First step consists of cloning the optimal

PID controller in order to obtain a

qualitative population for further

evolution. Second step is training the

ANN controller in a closed loop with the

model of the object. In the first step, a

nonlinear output gain is used for

compensating the influence of gravity.

When the cloning of the PID controller is

done, the resulting population is used as a

starting population for second stage of

evolution. Figure on the left shows the

training schema for the ANN controller of

the first link angle. The angle of the

second link is kept constant. Training the

ANN controller of the second link angle is

completely analogous.

EVOLUTIONARY STRATEGY APPLICATION

0 0.2 0.4 0.6 0.8 1
55

60

65

70

75

Time (s)

A
n

g
le

 (
d

e
g

)

setpoint

BP trained NN

ES trained NN

0 0.2 0.4 0.6 0.8 1
55

60

65

70

75

Time (s)

A
n

g
le

 (
d

e
g

)

setpoint

BP trained NN

ES trained NN
BP ES

Rise time tr (sec) 0.2520
0.1770 (42%

better)

Fall time tp (sec) 0.3020
0.2150 (40%

better)

Steady state error

()
0.0630

0.0380 (66%

better)

GENETIC ALGORITHM APPLICATION

Out of the starting population (3N+1 chromosomes, where N

is a positive integer), the ANN generator calculates weights

and biases for each controller (switch position is “1”), whose

fitness is evaluated, after simulation has been done. After

that, the sorting of individuals is being done in such a way

that the first individual is the best one. The selection operator

rejects the last 2N individuals while the copy of survived

N+1 chromosomes is being made. The set of copied

survivors forms the mating pool. Then the best chromosome

from the above mentioned set takes part in crossover with

each of the remaining N chromosomes from the mating pool.

The result is the offspring formed from 2N members, which

are then left to the mutation operator. Out of the mutated

offspring, NN generator forms 2N controllers (meanwhile,

the switch position has changed to “k” and remains

unchanged) whose fitness is evaluated in a mentioned way.

Now, the mutated offspring with its fitness joins the set of

original parents (of whom the copy has been made) and the

population is completed again (3N+1 individuals). The next

step is sorting this population and the process is being

repeated until the termination criterion is fulfilled (maximal

number of generations). It is obvious that the selection

pressure of this algorithm is extremely great, but it is

expected that the adaptation mechanism should preserve the

variety of population in order to prevent the premature

convergence. Recombination is being done in a way that

every weight of the first parent crosses over with

corresponding weight of the second parent (corresponding

weights have identical indices, such as locations). Results of

these “elementary” one-point crossovers are new weights

that are then joined in two complete chromosomes

representing the final product of the crossover operation

(Fig. 8b). It is obvious that the probability of elementary

crossover controls the expected number of crossover points

of the whole chromosome. In every generation, the

adaptation mechanism determines crossover and mutation

probabilities, which, in general, depend on the state of

population and on the generation number.

ADAPTATION MECHANISMS

constp

t

tt
ppptp

c

mmmm






max

max
minmaxmin)()(

 

 

















































FitFitp

FitFiteppp

p

FitFitp

FitFiteppp

p

m

FitFit

FitFit
K

mmm

m

c

FitFit

FitmidFit

K

dp

ccc

c

minmax,

minmax,

minmax,

minmax,

max

minmax

min

minmaxmin

min

minmax

min

minmaxmax

2

1

1)

2)

3)

Metho

d

25 chromosomes 13 chromosomes

AF SDF AF SDF

No

Adapta

tion

84.4206 0.2829 87.5134 1.1934

1 84.1212 0.5626 85.8405 0.7106

2 83.5713 0.1390 84.5193 0.7465

3 83.2636 0.6074 85.1524 0.9759

0 20 40 60 80 100
80

90

100

110

120

130

140

150

Generations

B
es

t
F

itn
es

s

No adaptation

Method 1

Method 2

Method 3

0 20 40 60 80 100
80

90

100

110

120

130

140

150

Generations

B
e
s
t

F
it
n
e
s
s

No Adaptation

Method 1

Method 2

Method 3

0 0.2 0.4 0.6 0.8 1
55

60

65

70

75

A
ng

le
 (

de
g)

BP trained NN
setpoint
GA trained NN

0 0.2 0.4 0.6 0.8 1
55

60

65

70

75

Time (s)

A
ng

le
 (

de
g)

BP trained NN
setpoint
GA trained NN

1
3

 ch
ro

m
o

so
m

es
2
5

 ch
ro

m
o

so
m

es

BP GA

Rise time tr (sec) 0.2689
0.2532 (6.2%

better)

Fall time tp (sec) 0.2970
0.2583 (15%

better)

Steady state error – positive step

()
0.0265

0.0258 (2.7%

better)

Steady state error - negative step

()
0.0292

0.0305 (4.3%

worse)

 EA Improved controller performance

 No restrictions when choosing objective function

 No need to know the controller outputs

 Operators adaptation ensured better EA

performance, especially for smaller populations

 EA outperformed BP

Pre-deterministic

feedback-deterministic

coevolution

CONCLUDING REMARKS

Inputs to the trained controller were error , its integral and derivation. ES(1,4) was implemented, with univariate mutation operator, and without
recombination operator. Standard deviation of mutation was adjusted in dependence on the effect of previously applied mutation, so that
simultaneous successful mutations increased the deviation widening in that way the search area, whereas simultaneous unsuccessful
mutations decreased the deviation by certain amount narrowing the search area.

