

WSEAS International Conference on FUZZY SYSTEMS

 Sofia, Bulgaria, May 2-4, 2008

Code Evaluation Using Fuzzy Logic

 Zikrija Avdagic Dusanka Boskovic Aida Delic

Faculty of Electrical Engineering

 University Sarajevo

Abstract This paper presents application of a fuzzy logic based system to

automatically evaluate the maintainability of code. Code evaluation is

accomplished by rating its quality provided with bad smells in code as inputs.

Straightforward bad smells with existing software metrics tools are selected as

inputs: duplicated code, long methods, large classes having a high cyclomatic

complexity, or a large number of parameters and temporary fields. Removing

these bad smells can result in significant code improvements concerning

readability and maintainability. However, the precise definition of attributes like

small, long, large or high is not clear, and their identification is rather subjective.

Fuzzy logic values are suitable for capturing partial correspondence to attributes

and fuzzy rules model have been used to describe the relation between bad

smells and code quality. Model supporting the experimental evaluation of the

fuzzy based code evaluation is implemented in Java.

Bad smells are considered as the “errors” in the code that make the code syntax harder to understand. Refactoring

itself will not bring the full benefits, if we don't know when it is appropriate to apply it. To make it easier for developers to

decide if software needs refactoring, Fowler and Beck proposed a list of bad smells. The list made by Fowler and his

associates includes 22 possible bad smells that can be found in.

 Duplicated code assumes the same code is written in more than one place, so it is important to find a better way to

implement the code functionality without repeating the written code.

Long method assumes a method so long that it is difficult to understand, change or extend. As already mentioned,

object-oriented programs are best to understand if only short methods are used.

 Long parameter list indicates that a method has too many parameters, what makes it difficult to understand, since

almost everything is passed as a parameter. Objects do not make it necessary to pass every parameter to a method,

only the values really needed for the operation.

 Temporary field – a member variable in a class used only occasionally and it is considered redundant to allocate

resources for this member. Most often the temporary field is a variable put in the class scope instead of in method

scope, thus violating the information hiding principle.

 Cyclomatic complexity is integer-based metric appropriately representing method complexity. As the objects of our

evaluation are classes, it is important to define class complexity in a term of method complexity.

Application of Fuzzy Logic to Code Evaluation

In this chapter our approach for evaluating the maintainability of classes based on bad smells by using

fuzzy logic is described.

The inputs in the model are crisp values entered as numerical values for duplicated code and temporary

field bad smells or obtained from software metric tools as presented in the next Table, and Figure shows

the model that defines the fuzzy inference process.

Metrics Description

LOC Lines of code

V(G) McCabe cyclomatic complexity used to

quantify method's complexity

NOP Number of parameters

Table

Fuzzy Rule Base

Fuzzification

Fuzzy Inference Engine

Defuzzification

Crisp input values

Crisp output values

Input Values and Membership Functions

To provide code evaluation as the input values next bad smells are chosen to be

inputs, and all are represented as crisp values:

Duplicated code is represented by five membership functions, as a combination of

left and right shoulder, triangle and trapezoid shape of function. The definitions of

very small, small, medium, large and very large pieces of duplicated code are

defined in terms of number of line of codes as illustrated in the next Figure.

Long parameter list bad smell is represented by five membership functions: very short,

short, medium, long and very long which are represented by left and right shoulder,

triangle and trapezoid shape of membership functions as shown in the next Figure.

Temporary field is a member variable in a class used only occasionally. It is represented

by four membership functions, as a combination of left shoulder, triangle, trapezoid and

right shoulder shape of function as graphical representation of a scale on a defined

universe of discourse as illustrated in the next Figure.

Long method is represented by a left shoulder shape, which defines the

smallest possible long method area, a trapezoid, that defines medium

membership functions and a right shoulder that is a graphical representation

of a large membership function as can be seen in the next Figure.

Cyclomatic complexity is usually represented by well defined ranges but in

order to get better outcome it is defined with overlapping membership functions.

This input is defined by four membership functions: simple code, complex, very

complex and untestable code. The next Figure shows the cyclomatic

complexity in terms of membership functions.

Class Quality Definition

The overall quality definition of the code of a class is represented by

five membership functions; excellent, very good, good, bad and very

bad. Left and right shoulder and triangle are used for the graphical

representation as shown in the next Figure. One region or a

combination of several regions, which are represented here, are the

outcome of the inference process.

Fuzzy Rule Base Expansion

Fuzzy rules are used to define code quality

depending on given input values. Developed

application includes about one hundred rules

so far, accomplishing input variable values

involvement in the inference process and

assuring that all output membership functions

can be reached as possible result. All rules

are written in fuzzy implication form, using the

AND operator between the input values. Here

is an example of a rule written in the rule

base:

IF duplicatedCode IS small AND

longMethod is small AND

cyclomaticComplexity IS simple AND

parameterList IS veryShort AND

temporaryField IS verySmall THEN

codeEvaluation IS excellent.

Fuzzyfication, Inference and

Defuzzification
The first step in an inference process is fuzzyfication. Since the

membership function of each input value has been defined, it was

easy to fuzzyfy the given values. Fuzzyfication means that each

value gets a description in terms of a membership function. Let us

suppose, for example, that the input value for a variable duplicated

code is 10. That means that this value is 100% in a very small area

and 30% in a small area after the fuzzyfication, as we can see in

the next Figure.

Implementation

In this Section we present Java application implementing

fuzzy-logic based inferencing and demonstrates two

examples of code evaluation. There are only few

attempts of building current fuzzy logic based systems in

Java. However, such systems are either built on an ad-

hoc basis without utilizing object oriented features as

generality and code reusability, or they are restricted to

provide learning environment support.

 To demonstrate an example of code evaluation let us

suppose that the evaluation of one method is based on

the following inputs:

duplicated code = 15

long method = 10

cyclomatic complexity = 6

parameter list = 2

temporary field = 22

With the given values only two rules will fire, Rule 21 and Rule 22. In that

case we have a situation as shown as on Figure below. The minimum

value in terms of the membership function for given values is 0.5 which is

used to scale the output fuzzy result for each rule, since a product method

is chosen to be the one for correlation. First rule activates excellent area

as fuzzy result and other very good area.

Next methods are applied in the second example: the

minimum method for fuzzyfication, minmax for inferencing

and maxheight for defuzzyfication. The same rules fire,

since the input values have not been changed.

 As it can be seen in the Figure above, the output result is truncated at

the minimum value, at the minimum truth of the premise, creating a

plateau. We can also see that if we used centroid as defuzzyfication

method, we would get the same result as in the example before; the only

difference is in time needed for the calculation. When using maxheight

method, it will use one randomly chosen value, since there is no specific

maximum.

Conclusion

Fuzzy logic is suitable for this area of research because it provides a great range of possible values for each input in terms of membership

functions. It is applicable to complex problems such as code evaluation, since it is able to deal with the subjective human analysis

involved with software engineering decision making.

 The future work goes in two different directions. The first direction is the expansion of an existing model, which would include an

automatic evaluation at program level. That means that the existing outputs from the evaluation of each method could be the input to the

next level, whereby it would be possible to automatically evaluate how "smelly" a whole program is. The approach can be used as a

preliminary step of the pattern based reengineering process to identify smelly classes, which are then searched for concrete smell or anti

pattern instances and subsequently improved by refactoring.

 On the other hand, automatic rule base generation has to be addressed. As mentioned above, writing all required rules manually to

cover all combinations of smells in a given piece of code does not scale in practice.

Literature

[1] M. Fowler, Refactoring, Improving the Design of Existing Code, Addison-Wesley Publishing house, 2000

[2] Z. Avdagic, Artificial Intelligence & Fuzzy-Neuro-Genetic, Grafoart, 2003

[3] T.J. McCabe, A Complexity Measure, IEEE Transactions on Software Engineering, Vol. SE-2, No. 4, 1976, pp. 308-320

[4] M. Mäntylä, C. Lassenius, Subjective evaluation of software evolvability using code smells: An empirical study, Journal of Empirical

 Software Engineering, Vol. 11, No. 3, 2006, pp 395-431

[5] J.P. Bigus, J. Bigus, Constructing Intelligent Agents Using Java, John Wiley & Sons, Inc., 2001

[6]M. Meyer, Pattern-based Reengineering of Software Systems, Proceedings of the 13th Working Conference on Reverse Engineering

 - WCRE, 2006, pp 305-306

Introduction
Software maintenance mainly deals with understanding and changing pieces of code. Understanding is often

hampered by code which is written without proper documentation and bad programming style, expressed by so-called

bad smell patterns.

