
 Project timetable

 2003-2007/Jan-Jul,Sarajevo

Theoretical research :

• Field: Artificial Intelligence

• Field: Computer Graphics

• Field: Signal Processing

Practical implementation :

• MATLAB-Neural Network

Toolbox

• Software Maya

 University of Sarajevo

Faculty of Electrical Engineering Sarajevo

Static Linking of Phonemes

to Polygonal 3D Model’s

 Facial Expressions

Prof. Zikrija Avdagic Dr Selma Rizvic Dr Samim Konjicija Mr Adnan Nuhic

Facial animation consists of two parts – speech animation and animation of emotions.

Using the prerecorded soundtrack of the speech, we can create speech animation and

fine tune it by adding emotional expressions.

Linguists have defined that the human speech consists of a particular number of

phonemes e.g. the smallest contrastive units in the sound system of a language. The

number and kinds of phonemes are different for every language. In our research we

experimented with the Bosnian language phonemes. Viseme is a generic facial image

that can be used to describe a particular phoneme. We created 13 visemes for 30

Bosnian language phonemes.

In last two decades facial animation has been intensively explored and various

approaches and techniques were introduced in order to achieve the most accurate and

natural look of the animated character. Three basic approaches are concatenative,

parameterized and muscle based approach.

Our research is based on parameterized approach introduced by Parke, where the 3D

polygonal mesh of the model is animated using the data from the parameter file, such

as phonemes and their durations.

The project is organised as follows: in sections 2-5 we introduce the training and

phoneme recognition using LVQ neural networks and generating the parameter file.

Section 6 describes mapping of the phonemes from the parameter file to 3D model’s

facial expressions using the MaxScript control script. The final section is a general

conclusion about our present work and some details of future work for the automated

speech animation of Bosnian language phonemes.

Speech is a signal mathematically represented as a function of time.

It can be viewed as continuous time signal or discrete time signal.

In most of the cases the goal of signal processing is obtaining

certain characteristics of output signal. In speech signal analysis the

goal is interpretation of signal and extracting characteristics and

information from input signal. Typically digital processing is used

here (such as filtering, parameter estimation etc.), followed by

feature recognition. The outputs of such a system are symbols (such

as phonemes or whole words).

It is known that human auditory system

uses a form of Fourier analysis for

speech signal processing. This serves as

motivation for using spectral analysis for

analyzing speech signal.

During speech signal analysis, frequency

resolution of human ear should be taken

into account. There is no reason to

analyze sounds which contain no

valuable information for us. Thus, we will

use mel scale. Mel scale is

experimentally formed scale (analytical

form was created later) by asking

listeners to determinate pitches of sound

which are equally spaced one from

another. As a result, mel scale is

approximately linear below 1000Hz and

logarithmic above. This means that

human ear perceives better sounds with

lower pitch.

To perform these steps, mel based filter bank is used. Filter bank attempts to decompose signal into a discrete set of

spectral features that contain information similar to those presented to the higher levels of processing in human auditory

system.

The filter bank is constructed using 13 linearly-spaced filters (133.33Hz between center frequencies,) followed by 27 log-

spaced filters (separated by a factor of 1.0711703 in frequency.)

Before a sample goes through filter bank, it is first passed through preemphasize filter described by following equation:

11)( zazH prepre

Typical values for apre are [-1.0, -0.4]. This filter is used for boosting a spectrum of signal by 20db by decade (which is

approximately an order of magnitude in frequency). Next step is to window the signal using Hamming window, described

by relation:

)
1

2
cos(46,054,0)(




N

n
nwh



10  Nn

Training samples are used for training a neural

network. Typical length of these samples is

between 1,5s and 3,5s although only a small part

of sample is used for actual training. Speech is

recorded in two different ways. First way is by

continuous pronunciation of one phoneme.

Using a computer system with a sound card and

microphone, we have recorded phonemes,

performing A/D conversion. Since frequency range

of human speech lies in range of 300Hz-8kHz

(although there are sounds that go up to 10kHz),

by Nyquist, we used sampling frequency of 16kHz.

Recording was done using PCM modulation

(Pulse Coded Modulation). Since dynamic range

of human ear is 120 dB, 20 bits would be required

for forming digital word. But, most of the speech

lies in range of 70 dB, which corresponds to

representation in 12 bits. Thus, since we had to

use representation that is power of 2, 16 bits were

used, which corresponds to 96dB in dynamic

range.

As it can be seen from the picture, during

repeated pronunciation there are parts in

signal which contain no useful information.

Those parts are usually on the beginning

and at the end of the file, and in between

pronunciation.

By carefully listening some phonemes, such

as K or G, we can establish that even some

parts of phoneme do not play important role

in creating a sound information. Sometimes

these parts even cause problems during

recognition, so they need to be cut out of

the signal. Thus, we have gained continual

pronunciation of consonant that is fully

functional during training .

Testing samples are recorded as single

pronunciation of one phoneme. Part of the

signal that carries no information before and

after phoneme is cut out.

For signal processing described in this

chapter CoolEdit96 was used.

Self-organizing networks are one of the most fascinating

topics in the neural network field. Such networks can

learn to detect regularities and correlations in their input

and adapt their future responses to that input

accordingly. The neurons of competitive networks learn

to recognize groups of similar input vectors. They are

called competitive since neurons in layers of these

network compete for the right to produce an output.

Neuron that creates an output is called „the winner“.

Self-organizing maps learn to recognize groups of

similar input vectors in such a way that neurons

physically near each other in the neuron layer respond

to similar input vectors.

Learning Vector Quantization (LVQ) is a method for

training of a competitive layer in a supervised manner.

This means that during training of the network (that is

during adjusting network weights) there is “a teacher”

who explicitly gives target values for each input pattern.

Thus network knows exactly which value to produce on

net output for each given input value.

So, before we can start recognizing with

our network we must train it. For training of

our network, we used samples obtained in

a manner described previously. For

obtaining acoustic vector with which we

train our network, we do not use complete

sample, but only small part of it:

•For vowel classification network a sample

with length of 20 ms;

•For semivowel classification network a

sample with length of 500 ms;

•For consonant classification network a

sample with length of 500 ms;

During analysis, window of 10 ms is used.

Thus, for vowels we gain 25 training

samples for one phoneme (because of

25% of overlap between each window), for

semivowels and consonants 62 training

samples per phoneme. Network receives

column vectors with 13 values (described

previously). Training samples are given to

the signal analysis subsystem in sequence.

Acoustic vectors obtained by signal

analysis are stored in matrix. Once when

all samples are analyzed, and resulting

acoustic vectors are in the matrix, we can

begin the training. This process is repeated

for each neural network. Training was done

within 250 iterations with learning rate of

0.01.

For recognition we used complete

sample of recorded phoneme.

Patterns that need to be recognized

are given to the network in

sequence. During signal analysis of

given sample, as with the training

samples, window of 10 ms was used

with overlap of 25%. Matrix of

recognized phonemes within one

sample is forwarded to reduction

function and then to printing function

for output on screen. After

recognition, calculation of phoneme

length is performed. Result is in

frames. One frame is 1/25 of a

second, according to PAL standard.

Length is then stored in a matrix

along with other phoneme lengths in

consecutive order. After all sound

files given as input for recognition

has been processed in this manner,

matrix is saved as a textual

parameter file. Separate .wav files

are woven into one sum .wav file.

Recognition part of the system is

realized within prepoznavanje

LVQMax.m file. Function of signal

analysis used during recognition is

realized in mfccSanjin.m and

pripremaUzorakaMFC.m files. All

other procedures and functions used

are standard Matlab toolbox for

neural networks.

Training of the system is realized in

treniranjeLVQMax.m file. Function of signal analysis

used during recognition is realized in mfccSanjin.m

file. Recognition of phonemes is realized in

prepoznavanje.m, redukcija.m and stampaj.m. Their

function is:

• File Prepoznavanje – performs recognition of given

sample with already trained network;

•Reduction – result of each recognized phoneme is

placed into a result matrix. Result matrix contains

consecutive values of each recognized phoneme.

Function reduction performs counting of counting of

each occurrence of recognized phoneme within given

sample. Final result, that is a recognized phoneme, is

a phoneme with largest number of occurrences.

Output from this procedure is a 1x1 matrix that

contains recognized phoneme;

•Command Stampaj – performs printing of

recognized phoneme on the screen. Recognized

phoneme is in fact stored in resulting 1x1 matrix as a

class number within neural network. Thus this

procedure performs decoding of a class into a

phoneme character.

Parameter calculation and creation of sum .wav file is

performed within maxParametri.m file. Recording of

textual parameter file and sum .wav file is performed

with snimi.m file.

Morpher modifier is a data structure designed to handle particular number of channels and their parameters. Assigning this modifier to an object allows the animator to

make the animation by morphing a basic object from one copy to another in time. After visemes are created we assign them to Morpher modifier channels as morph targets.

Our algorithm provides automatic key frame generation for these visemes using MaxScript scripting program .

MaxScript is the built-in scripting language for 3ds max. It’s an object oriented programming language working with classes, objects and methods.

MaxScript provides a set of methods working with Morpher modifier. Using these methods we can add or delete Morpher modifier channels, check their range, usage etc.

The algorithm has the following phases:

•initialization, file opening

•viseme check

•key frame creation in corresponding Morpher modifier channel

•end of file check

•final animation rendering

MaxScript control script uses a parameter file with phonemes and their start and end frames as an input file. Each line of the file is parsed. By a case expression is

determined which phoneme appeared. The corresponding viseme channel of Morpher modifier is set to 100% at start time and to 0% at end time. By performing this

operation in animate context, key frames are created.

After reaching end of file, the animation could be rendered by the script using previously defined render parameters such as camera name, output file size, interval in

frames and output file name .

The animator is now able to fine tune the animation and add the emotions visemes to the model.

This paper described

the present stage of our

research in automatic

animation of Bosnian

language phonemes.

We recognized

phonemes using LVQ

neural network in order

to generate a parameter

file for the automatic

animation system based

on 3ds max.

Using that parameter file as an input parameter of the MaxScript control script we performed the hardest work for an animator, creating

the keyframes of Morpher modifier channels containing visemes that are corresponding to the phonemes of the prerecorded soundtrack.

After this process, the animator is able to fine tune the animation and add the facial expressions of the emotions.

Our further work will be dedicated to phoneme classification using neural networks. At first we should classify the phonemes by three

basic phoneme types in Bosnian language and after we will perform the classification of particular phonemes inside that type.

The following phase of our research will contain experiments in Bosnian language phoneme recognition in real time, that should be the

basis for various applications in computer animation, computer assisted language learning, development of virtual environment avatars

etc.

Project description

